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ABSTRACT

Context. Thermal instability plays a major role in condensation phenomena in the solar corona, e.g. for coronal rain and prominence
formation. In flare-relevant current sheets, tearing instability may trigger explosive reconnection and plasmoid formation. However,
how both instabilities influence the disruption of current concentrations in the solar corona has received less attention to date.
Aims. We explore how the thermal and tearing modes reinforce each other in the fragmentation of a current sheet in the solar corona
through an explosive reconnection process, characterized by the formation of plasmoids which interact and trap condensing plasma.
Methods. We use a resistive magnetohydrodynamic (MHD) simulation of a 2D current layer, incorporating the non-adiabatic effects
of optically thin radiative energy loss and background heating using the open-source code MPI-AMRVAC. Multiple levels of adaptive
mesh refined grids are used for achieving a high resolution to resolve the fine structures during the evolution of the system.
Results. Our parametric survey explores different resistivities and plasma-β to quantify the instability growth rate in the linear and
nonlinear regimes. We notice that for dimensionless resistivity values within 10−4 − 5 × 10−3, we get explosive behavior where
thermal instability and tearing behavior reinforce each other. This is clearly below the usual critical Lundquist number range of pure
resistive explosive plasmoid formation. We calculate the mean growth rate for the linear phase and different non-linear phases of the
evolution. The non-linear growth rates follow weak power-law dependency with resistivity. The fragmentation of the current sheet and
the formation of the plasmoids in the nonlinear phase of the evolution due to the thermal and tearing instabilities are obtained. The
formation of plasmoids is noticed for the Lundquist number (S L) range 4.6 × 103 − 2.34 × 105. We quantify the temporal variation of
the plasmoid numbers and the density filling factor of the plasmoids for different physical conditions. We also find that the maximum
plasmoid numbers scale as S 0.223

L .Within the nonlinearly coalescing plasmoid chains, localized cool condensations gather, realizing
density and temperature contrasts similar to coronal rain or prominences.
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1. Introduction

Magnetic reconnection is ubiquitous in both laboratory and as-
trophysical plasmas, where the change of magnetic field topol-
ogy leads to conversion of the magnetic energy into thermal and
kinetic energies (Biskamp 2000). Magnetic reconnection plays
a key role in the fast energy release in solar flares (Giovanelli
1939, 1947, 1948; Priest & Forbes 2000; Hesse & Cassak 2020),
in coronal mass ejections into the ambient solar wind medium
(Gosling et al. 1995; Schmidt & Cargill 2003; Karpen et al.
2012), and mediates the loss of plasma confinement in toka-
mak experiments (Günter et al. 2015). The rearrangement of
the magnetic field topology occurs in a localized plasma region
where non-ideal magnetohydrodynamics (MHD) effects domi-
nate, breaking the frozen-in condition. The Sweet-Parker model
(Parker 1957; Sweet 1958) predicts the reconnection rate to scale
with the Lundquist number (S L = LvA/η) as S −1/2

L , where L
is the characteristic length, vA is the Alfvén velocity, and η is
the resistivity of the medium. However, this prediction is too
slow to agree with reconnection observations for the solar atmo-
sphere. On the other hand, the Petschek model (Petschek 1964)
estimates the reconnection rate to scale as (log S L)−1. Biskamp
(2000) and Huang & Bhattacharjee (2010) state that the Petschek
reconnection is achievable only if the local resistivity of the cur-
rent sheet is enhanced, while Baty et al. (2009) reports the occur-

rence of Petscheck like reconnection for a low uniform resistivity
(10−3).

The simplest configuration susceptible to magnetic recon-
nection is a single current layer model formed by a polarity re-
versal of the magnetic field. This reconnection may be triggered
due to the growth of a classical linear resistive instability, known
as tearing mode instability (Furth et al. 1963). A current sheet of
aspect ratio L/δ & 2π (where L and δ are the characteristic length
and thickness of the current layer respectively) can develop mag-
netic islands due to the growth of linearly unstable perturbations.
Pucci & Velli (2014); Landi et al. (2015); Tenerani et al. (2016)
have reported the development of ideal tearing modes in current
sheets for a large aspect ratio of ∼ S 1/3

L . On the other hand, dou-
ble current layer models are also seen to give rise to resistive in-
stabilities known as double tearing modes (DTMs). Double cur-
rent layer models with two widely seperated current layers can
develop a single standard tearing mode on each layer, to influ-
ence each other later in the nonlinear evolution stage (Keppens
et al. 2013; Paul & Vaidya 2021). In contrast, DTMs are tear-
ing modes that are intrinsically coupled and that co-develop on
nearby resonant surfaces. The evolution of DTMs in the non-
linear regime has been seen to lead to an explosive reconnec-
tion and a weak dependence on the resistivity (Zhang & Ma
2011; Akramov & Baty 2017) (and references therein). DTMs
have been studied under various important conditions like exter-
nal shear flows (Ofman 1992; Bierwage et al. 2007; Wang et al.
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2008), bootstrap current (Yu 1997), anomalous electron viscosity
(Dong et al. 2003), collisionless plasma (Bierwage & Yu 2007),
and Hall effects (Zhang et al. 2008; Zhang & Ma 2009). Pucci
et al. (2018) estimated scaling relations between the maximum
growth rate, Lundquist number and the aspect ratio, for linear
tearing modes in a double current sheet set up.

Thermal instability is an essential mechanism to form con-
densations in the solar atmosphere. The theory is laid out in
classical treatments by Parker (1953) and Field (1965). These
works explain how a runaway process of radiative cooling leads
to thermal instability (TI) in plasma. The solar corona may be
considered to be in a delicate thermal equilibrium balancing the
optically thin radiative loss and background heating in combi-
nation with thermal conduction. If this balance is perturbed, and
the increment of radiative loss cools down the plasma, isobaric,
isentropic or isochoric evolutions may self-amplify the radiative
losses. This drives the enhancement of the local plasma density,
which further increases the energy loss by radiation (because ra-
diative energy loss in optically thin medium varies with the den-
sity squared), which in turn drops the temperature even more.
Hence, a catastrophic runaway process results in a rapid drop in
temperature and an increase in plasma density. Field (1965) re-
ported a detailed analysis of the thermal instability in an infinite
homogeneous medium which triggers the catastrophic radiative
cooling. Later, the analysis was extended to non-uniform slab ge-
ometry (van der Linden & Goossens 1991b; van der Linden et al.
1992), and cylindrical flux tubes with solar coronal conditions
(van der Linden & Goossens 1991a; Ireland et al. 1995; Soler
et al. 2011). The thermal instability theory can be invoked to ex-
plain various fascinating features of the solar atmosphere. E.g.,
Smith & Priest (1977) discussed the formation of a solar promi-
nence in a current sheet, and Priest & Smith (1979) extended the
study for prominence formation to solar coronal arcades. Forbes
& Malherbe (1991) used 2D MHD simulation in a line-tied cur-
rent sheet with the effect of radiative energy losses to explain
the formation of post-flare loops. The ab-initio formation of a
solar prominence due to chromospheric evaporation and thermal
instability is shown by Xia et al. (2012) in a 2.5D simulation,
and the dynamical evolution of similar prominence setups is fur-
ther explored in Keppens & Xia (2014). Later, Xia & Keppens
(2016a) developed a 3D model of prominence formation due to
the plasma cycle between corona and chromosphere, while the
complex 3D dynamics in a twin-layer prominence is reported
by Xia & Keppens (2016b). More recently, linear and non-linear
stability analysis of thermal instability due to the interaction of
the entropy and slow MHD wave modes is discussed in Claes &
Keppens (2019); Claes et al. (2020), and the effect on the ther-
mal instabilities arising from different radiative cooling models
is reported by Hermans & Keppens (2021). The formation of fine
structures in the prominence may well relate to the linear mag-
netothermal modes affected by anisotropic thermal conduction
with finite (albeit small) conduction across the magnetic field
lines (van der Linden & Goossens 1991a). Recent solar appli-
cations include the works by Li et al. (2022), who studied the
formation of coronal rain due to the thermal instability of ran-
domly heated arcades, or the formation of prominences due to
levitation-condensation by Jenkins & Keppens (2021), as well
as a novel plasmoid-fed prominence formation scenario during
flux rope eruption by Zhao & Keppens (2022). In the latter work,
chromospheric plasma collects into a current sheet, which ulti-
mately shows chaotic plasmoid formation, where the cool chro-
mospheric plasma gets trapped and lifted into an erupting promi-
nence structure. This study motivates our current work, where

we will investigate more rigorously how thermal and tearing ef-
fects can reinforce eachother.

In this work, we study the tearing and thermal instabilities
of a single current sheet model with the non-adiabatic effects
of radiative energy loss and background heating in a resistive
2D MHD simulation. Recent theoretical studies by Ledentsov
(2021a,b,c) show that the instability growth rate in the linear
regime of a tearing mode is modified when the non-adiabatic ef-
fects, radiative energy loss, electrical and thermal conductivities
are incorporated. This motivates us to explore the growth rate
of a thermally influenced tearing mode in the linear and non-
linear domains by means of MHD simulation. The focus of our
idealized study is mainly devoted to estimating the characteris-
tic growth rate time scales in the linear and non-linear regimes
and finding scaling relations with the resistivity in the different
phases of the non-linear evolution. We also quantify the number
of generated plasmoids as influenced by different physical pa-
rameters, and its scaling relation with Lundquist number. In var-
ious earlier works, Zhang & Ma (2011); Keppens et al. (2013);
Akramov & Baty (2017); Paul & Vaidya (2021) have studied
the tearing mode effect in explosive reconnection events for adi-
abatic conditions. By including the radiative energy loss in an
optically thin medium and background heating to investigate the
effect of thermal instability in a current sheet model, we deter-
mine whether explosive reconnection may be triggered in differ-
ent Lundquist regimes than in pure resistive MHD alone.

The rest of the paper is organized as follows. In section 2,
we describe the model setup and the numerical framework along
with the initial and boundary conditions. In section 3, the main
results of the study and its analysis are reported. Section 4 dis-
cusses the significance of the work for a typical coronal medium,
summarizes the key findings, and finally concludes how our find-
ings may be useful for future studies.

1 2 3 4 5 6 7 8 9
log10T (K)

30

28

26

24

22

lo
g 1

0 
(T

) (
er

g 
cm

3  s
1 )

Fig. 1: Radiative cooling curve due to ‘Colgan_DM’ model.
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2. Numerical setup of the model

For understanding the evolution of the thermal instability in as-
sociation with the tearing mode, we use a resistive 2D MHD sim-
ulation using MPI-parallelised Adaptive Mesh Refinement Ver-
satile Advection Code (MPI-AMRVAC)1 (Keppens et al. 2012;
Porth et al. 2014; Xia et al. 2018; Keppens et al. 2021). The spa-
tial domain of the simulation setup is −12.8×104 km to 12.8×104

km along both x and y directions with maximum five levels of
adaptive mesh refinement (AMR) between −2 × 104 km ≤ y ≤
2 × 104 km and −12.8 × 104 km ≤ x ≤ 12.8 × 104 km, effec-
tively achieving a maximum spatial resolution of 2048 × 2048,
which makes the smallest cell of size 125 km. The triggering of
the (de)refinement is based on the errors estimated by the den-
sity (gradient) of an instantaneous time step. To explore the non-
adiabatic effects in the evolution of the tearing instability in the
resistive MHD regime, we solve the following normalised MHD
equations numerically,

∂ρ

∂t
+ ∇ · (vρ) = 0, (1)

∂(ρv)
∂t

+ ∇ · (ρvv + ptotI − BB) = 0, (2)

∂E

∂t
+ ∇ · (Ev + ptotv − BB · v) = ηJ2 − B · ∇ × (ηJ) (3)

− ρ2Λ(T ) + Hbgr,

∂B
∂t

+ ∇ · (vB − Bv) + ∇ × (ηJ) = 0 , (4)

∇ · B = 0 , (5)
J = ∇ × B . (6)

Here, I is the unit tensor, and the quantities ρ,T,B, v, and η have
their usual meaning of the mass density, temperature, magnetic
field vector, velocity, and resistivity respectively. The total pres-
sure, ptot adds the plasma and the magnetic pressure

ptot = p +
B2

2
, (7)

where, the thermodynamic quantities are linked through the ideal
gas law: p = ρkBT/µmH , where p is the plasma pressure, kB is
the Boltzman constant, µ = 0.6 is the coronal abundance due to
the fully ionized plasma of H and He atoms with the abundance
ratio of 10 : 1, and mH is the proton mass. The total energy
density is given by

E =
p

γgc − 1
+
ρv2

2
+

B2

2
, (8)

where, γgc = 5/3 is the ratio of specific heats for the monoatomic
gas. The solenoidal condition of magnetic field, and the current
density, J are given by the equations (5) and (6) respectively. The
non-adiabatic effect due to the radiative cooling of the optically
thin medium, which is relevant for the solar corona is incorpo-
rated by the third term in the RHS of equation (3). The optically
thin cooling due to the radiation depends on the local density,
and the temperature-sensitive cooling model Λ(T ). In this work,
we have used the combined cooling model developed by Col-
gan et al. (2008) and Dalgarno & McCray (1972), which we call
as ‘Colgan_DM’ model, shown in Fig. 1. The details of differ-
ent radiative cooling curves and their effects on the formation of

1 open source at: http://amrvac.org

condensations are reported in Hermans & Keppens (2021). In or-
der to maintain a thermal equilibrium in the initial state, we use
the background heating, Hbgr (last term in the RHS of equation
(3)) in such a way that it compensates the radiative loss at the
initial state. Hence, we take the background heating as

Hbgr = ρ2
i Λ(Ti), (9)

where, ρi and Ti are the equilibrium density and temperature
respectively, and therefore the background heating is constant
with time (but it varies in space as explained in the following
section). Note that for simplicity, we here study an idealized
current sheet setup, where we ignore gravity and the role of
(anisotropic) thermal conduction.

To study the long term behaviour of the evolution of a cur-
rent layer configuration subjected to the resistive MHD and non-
adiabatic effects of radiative cooling, we set a 2D square domain
in the x−y plane that spans between -12.8 to 12.8 (in dimension-
less unit) along x and y directions. The unit density, temperature
and length scale which serve to normalize the simulation are set
as ρ̄ = 2.34 × 10−15 g cm−3, T̄ = 106 K and L̄ = 109 cm respec-
tively, which are typical values for the solar corona. The mag-
netic field in the initial setup is taken as a non-force free planar
field given by,

Bx = B0 tanh(y/ls) , (10)
By = 0. (11)

This implies that the Bx component realizes a polarity inversion
around y = 0, and hence a current sheet is formed at y = 0 that
spans between x = [−12.8, 12.8] × L̄. We set the background
field amplitude, B0 = 1 (which corresponds to 2 G in physical
unit), and ls = 0.5, which sets the total width of the current sheet
to 2ls. The planar magnetic field Bx(y) is further perturbed to
trigger some tearing-type evolution, as follows

δBx = −
2πψ0

ly
cos
(2πx

lx

)
sin
(2πy

ly

)
, (12)

δBy = +
2πψ0

lx
sin
(2πx

lx

)
cos
(2πy

ly

)
, (13)

where the geometric parameters lx = ly = 25.6 × L̄ match the
domain sizes of the simulation, and the perturbation amplitude
ψ0 = 0.1 is 10% of the magnetic field amplitude B0. It is to be
noted that equations (12) and (13) satisfy the condition ∇ · δB =
0. The initial density profile is taken as

ρi = ρ0 + cosh−2(y/ls), (14)

where ρ0 = 0.2 (which corresponds to 4.68 × 10−16 g cm−3 in
physical unit) is the density outside the current sheet. The initial
density profile has the peak value of 2.808×10−15 g cm−3 at y = 0
and gradually converges to ρ0 for |y| > 0. The initial equilibrium
temperature Ti is taken as a constant value of 0.5 MK through-
out the simulation domain in order to fix the plasma-β = 0.2,
which is below unity as appropriate for the solar corona. The
initial variation in density, together with the uniform tempera-
ture, realizes a pressure variation p(y) that exactly balances the
Lorentz force associated with the field Bx(y). This implies that
in a simulation where no magnetic field perturbation is applied,
and where the resistivity is set to zero (ideal MHD), we actually
have a force-balanced and thermally balanced environment. In
our simulations below, resistive effects will modify the temper-
ature and hence drive the system away from the thermal equi-
librium balance between losses and heating Hbgr. Note that the
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Fig. 2: Distribution of the absolute current density, |Jz| normalized with the instantaneous absolute peak current density, |Jmax| for
different evolution stages. The y-domain is only shown between −1.45 × 104 km ≤ y ≤ +1.45 × 104 km, which contains the region
of the current sheet. (An animation of the figures is available online).
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Fig. 3: Variation of Fy = −
∂p
∂y

+ Bx

(∂By
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−
∂Bx

∂y

)
along the y-

direction between y = ±0.75 × 104 km for three different times
(t = 0, 300 and 429 s) before the fragmentation stage of the
current sheet.

finite resistivity is crucial to allow tearing. If we simulate with-
out non-adiabatic effects included, and just evolve the system in
resistive MHD at the used constant and uniform resistivity val-
ues, we get an evolution towards a standard reconnection exper-
iment with a central Sweet-Parker type current sheet in between
a growing island structure (at both periodic sides).

After this initial setup the system evolves as governed by the
equations (1-6). This set of equations is solved using a three-step
Runge-Kutta time integration with a third-order slope limited re-
construction method (Čada & Torrilhon 2009), and Harten-Lax-
van Leer (HLL) flux scheme (Harten et al. 1983). As we en-
counter fairly extreme density and temperature contrasts in the
evolution, we need to enforce an automated recovery procedure

to ensure positivity throughout, and we do so by fixing the min-
imum pressure and density values equal to 10−14 and 10−12 code
units respectively. We follow the current sheet evolution for up to
2550 s (42 minutes), and usually save data with 42.5 s cadence,
which gives 60 simulation snapshots. We use periodic boundary
conditions in the x, and open boundary conditions in the y direc-
tion. The typical wall clock time of a single run is ≈ 20 hours for
parallel computation with 15 CPUs.

3. Results and Analysis

3.1. Global evolution

The spatial distribution of the absolute current density, |Jz| is
shown in Fig. 2 for four different time stages, with plasma-
β = 0.2, and resistivity, η = 0.001 (equivalent to 1.2 × 1014 cm2

s−1 in physical unit). Fig. 2a represents the initial configuration
of the current sheet, which is located around y = 0 and extends
all along the x direction. Fig. 2b) and its animated view clearly
shows that the current sheet narrows as a result of the thermo-
dynamic evolution driven by radiative losses and quickly there-
after fragments, forming a pronounced chain of many small-
scale plasmoids due to the combination of thermal and tearing
instabilities. We calculate the force (per unit volume) along the

y-direction, Fy = −
∂p
∂y

+ Bx

(∂By

∂x
−
∂Bx

∂y

)
. At t = 0, the system

maintains the equilibrium condition and hence Fy = 0, but when
the system evolves, the equilibrium is violated due the thermally
influenced tearing mode instability, where we see Fy has a dom-
inating positive force (upward direction) for y < 0, and negative
(downward direction) dominating force for y > 0 in the vicinity
of the current sheet at x = 0 between y = ±0.75 × 104 km at
t = 300 and 429 s before the fragmentation stage of the current
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Fig. 4: Same as Fig. 2 for plasma density, ρ for different evolution stages. The over-plotted white lines represent the magnetic field
lines. (An animation of the figures is available online).
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Fig. 5: Distribution of the temperature, T within the same domain as Fig. 2, for different evolution stages. (An animation of the
figures is available online).

sheet (see Fig. 3). Therefore, the current sheet is squeezed along
the y-direction. As time progresses, the small islands coalesce
and merge with each other at later times shown in Figs. 2c and
2d. The evolution of the plasma density, ρ, at the same stages is
shown in Fig. 4. The initial configuration of the density distribu-
tion shown in Fig. 4a has an enhanced density region present in

the vicinity of y = 0 according to equation (14). In the later stage,
at t = 900 s (Fig. 4b), the current sheet fragments into smaller
plasma blobs, and these merge with each other at the later stages
as shown in Fig. (4c) and (4d) respectively. The same instants but
seen in the temperature evolution are shown in Fig. 5. Comparing
Figs. 4b, 4c, 4d with the Figs. 5b, 5c, 5d shows that the tempera-
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Fig. 6: Distribution of the (a) radiative cooling (RC) and background heating, Hbgr, and (b) temperature, T along the vertical cut
at x = 0 between y = ±1.25 × 104 km for t = 0 and 429 s. The minimum temperature obtained within this regime at t = 429 s is
Tmin = 21000 K.
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ture depletion regions are formed at the regions where the plasma
materials are condensed. We calculate the radiative loss at x = 0
between y = ±1.25×104 km, which covers the entire vertical do-
main of the current sheet. At t = 0, the radiative loss is equal to
the background heating, Hbgr, which is constant with time. How-
ever, when the system evolves due to the thermally influenced
tearing mode, the radiative loss term dominates over the back-
ground heating within the selected region. This is shown in the
Fig. 6a, where the radiative loss dominates over Hbgr at t = 429
s, which leads to a temperature drop to 21000 K within that re-
gion as shown in Fig. 6b. The spatial distribution of the density
on a horizontal cut all along the current sheet (y = 0) is shown
in Fig. 7, for two different evolution stages (t = 900 and 2447 s).
Due to the relative motions of the plasmoids along the ±x direc-
tion, they merge to form denser plasmoids, separated by density
depletion regions, which is reflected in Fig. 7. The temporal evo-
lution of the instantaneous minimum and maximum density (left)
and temperature (right) as computed over the entire domain are
shown in Fig. 8. These extrema are virtually always encountered
along the central current sheet. It shows that the minimum den-
sity (ρmin) falls gradually with the evolution, whereas the max-
imum density (ρmax) increases with time, which means that the
overall density contrast of the medium increases with time. It
is estimated that the ratio of ρmax to ρmin changes by a factor
of ≈ 101 to ≈ 106 between the initial and the final times. The

equilibrium temperature of the initial setup is constant (0.5 MK)
for the entire simulation domain, and the minimum temperature
during the evolution is not allowed to drop below 1000 K, which
is well above the minimal temperature of the exploited cooling
curve. Hence, the maximum (Tmax) to minimum (Tmin) tempera-
ture ratio of the medium is unity at the initial stage, and rises up
to the factor of ≈ 104 at the final time. The local thermodynamic
analysis for some typical, selected plasmoids are shown in Figs.
9, 10 and 11. The zoomed version of a local plasmoid during
the evolution stage for two different times, t = 900 and 2447 s
are shown in Fig. 9(b) and 9(d) respectively, where the variation
of the mass densities along the horizontal cuts are marked, and
shown in Figs. 10(c) and 10(f) respectively. The maximum den-
sity enhancement along the marked line for t = 900 s is ∼ 10−13

g cm−3 (Fig. 10(c)), whereas for t = 2447 s, the value rises upto
∼ 10−12 g cm−3 (Fig. 10(f)). This implies that the condensations
formed by thermal instability within smaller-scale plasmoids get
collected into larger, condensed regions, as the plasmoids merge
by coalescence. Similarly, the temperature variation in the same
zoomed region is shown in Fig. 10. It shows that the minimum
temperature within this domain is ∼ 104 K, and the temperature
depletion regions correspond to the overdense regions of Figs.
9(a) and 9(c) respectively. The radiative loss for an optically thin
medium, which depends on the local density and temperature
(ρ2Λ(T )) is shown in Fig. 11. The variation of the radiative loss
along the horizontal marked lines of Figs. 11(b) and 11(e) are
shown in Figs. 11(c) and 11(f) respectively. It is to be noted from
Figs. 10(b) and 11(b) (or from Figs. 10(e) and 11(e)) that the ra-
diative loss of the temperature depleted region is more than its
surrounding. This is because of the density enhancement of that
region compared to its surroundings (see Fig. 9(b) or 9(d)), and
the ρ2 term dominates over the Λ(T ) resulting the increase of
the radiative loss, ρ2Λ(T ). The condensations that are entrapped
within the coalescing plasmoids thereby also show rapid vari-
ations of the radiative losses across their edges, much like the
prominence corona transition region (PCTR), also at play for in-
dividual coronal rain blobs. Note that the precise variation of
temperature, density and radiative losses is here not incorporat-
ing effects of anisotropic thermal conduction, and therefore we
have extremely sharp transitions, as explained also in (Hermans
& Keppens 2021).
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Fig. 8: Temporal evolution of the instantaneous maximum and minimum densities (left) and temperatures (right) within the entire
simulation domain.

Fig. 9: Top panel: (a) Distribution of the density for t = 900 s, within the same domain as Fig. 2, (b) zoomed version of the selected
region. Bottom panel: Same as top panel for t = 2447 s.

3.2. Growth rate and scaling relation

The velocity distribution of the plasma motion is shown in Fig.
12, where the magnitude is scaled with respect to the Alfvén
velocity vA, which is measured based on the magnetic field
strength, B0 = 2 G, and mass density of the equilibrium current
sheet, ρc = 2.81 × 10−15 g cm−3. The Alfvén time scale is mea-
sured by tA = L̄/vA, where, L̄ is the unit length of 109 cm. It is ev-
ident from Figs. 12a, 12b and 12c that the velocity, vx stays local-
ized in the vicinity of the current sheet (y = 0). Note that in line
with our initial single-island magnetic field perturbation, we see
a pronounced rightward motion in the right half of the domain,
and a leftward one at left. We later see typical Petschek-like sig-
natures in the flow fields in between islands, e.g. especially about

the middle x = 0, with super-Alfvénic outflow speeds bounded
by slow shocks. Fig. 13a represents the evolutionary nature of a
current sheet in an adiabatic and non-adiabatic conditions. It is
evident from the figure that the instantaneous maximum velocity
growth for the non-adiabatic case is more rapid than for the adia-
batic conditions. The evolutionary behaviour of the current sheet
configuration due to thermal and tearing instabilities is shown
by the black curve in Fig. 13a for plasma-β = 0.2, and a given
resistivity value, η = 0.001, while the evolution for different η
values are shown in Fig. 13b. As a diagnostic measurement of
the instability, we determine the evolution of the instantaneous
maximum absolute velocity, |vx|max. From Fig. 13a, it can be
noticed that this evolution exhibits three distinct phases: (i) the
early phase (between t = 0 to 250 s), where the velocity growth
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Fig. 10: Top panel: (a) Distribution of the temperature for t = 900 s, within the same domain as Fig. 2, (b) zoomed version of the
selected region, (c) Density and temperature distributions along the horizontal cuts marked by the dashed lines in figure 9(b) and
10(b) respectively. Bottom panel: Same as top panel for t = 2447 s.

Fig. 11: Same as Fig. 10 for radiative loss in optically thin medium.

occurs exponentially (linearly on the logarithmic-linear scale),
which is called the linear growth regime, (ii) the next phase be-
tween t = 250 to 665 s, where the growth rate is slower com-
pared to the linear phase, which is called the Rutherford regime
(Rutherford 1903), and (iii) the final phase, which we call the
post-Rutherford regime, starts at t = 665 s, where the instability
suddenly develops in an explosive way, and finally saturates at a
later time. To infer the evolution rates quantitatively for all the
different phases, we calculate the growth rates by scaling it with
respect to the Alfvén time scale, tA. We define the growth rate as,
γ = d

(
ln(|vx|max)

)
/dt. To estimate the linear growth rate, γlin, we

calculate the growth rate in the linear regime by taking the mean
value of the slope, which gives, γlin = 3.76× 10−1t−1

A . This value

is larger by an order of magnitude as compared to the studies of
the double current sheet problem (Otto & Birk 1992; Zhang &
Ma 2011; Akramov & Baty 2017; Paul & Vaidya 2021), where
the radiative cooling effect (or other non-adiabatic effects, e.g.
thermal conduction) is not incorporated. This implies that the
larger linear growth rate can be ascribed to the non-adiabatic ef-
fects of the radiative cooling and background heating. This is
also in agreement with our own study for a single current layer
model reflected in Fig. 13a, where the average growth rate for the
adiabatic medium is smaller than the non-adiabatic case. Simi-
larly, we estimate the average growth rates for the Rutherford
regime (γRuth) and the post-Rutherford regime (γPR) for different
resistivity values within the range of η = 0.0001 to 0.005. The
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Fig. 12: Distribution of the velocity, vx within the same domain as Fig. 2, for different evolution stages. The magnitude of the
velocity is scaled with respect to the Alfvén velocity, vA. (An animation of the figures is available online).
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Fig. 13: Maximum absolute value of vx as a function of time. The left panel represents the velocity evolution of the current layer
system for two different cases: adiabatic medium, and non-adiabatic medium when radiative energy loss and background heating
are incorporated for resistivity, η = 0.001 and plasma-β = 0.2. The right panel is for non-adiabatic evolution for different η values
keeping all the other parameters the same. The vertical dashed lines represent the different phases of the evolution.

velocity evolution for some selected resistivity values are shown
in Fig. 13b. This shows that the explosive phase of the evolution
starts at later times for higher resistivity values, and converges
at the final stage. For a Sweet-Parker type current sheet (where
the inverse aspect ratio of the current sheet follows the scaling
relation, ls/L ∼ S −1/2

L ), the thickness of the current sheet in-
creases with the resistivity (Loureiro et al. 2007), which reduces
the growth rate of the tearing mode when it is normalized with
respect to the Alfvén crossing time along the length of the cur-
rent sheet (x-direction in our case). Hence, the explosive phase
of the evolution in our simulation starts at later times for higher
resistivity values. We have estimated the absolute current den-
sity, |Jz| (normalized to unity) before the fragmentation stage of
the current sheet (t = 214 s) by taking a vertical cut along the

y-direction at x = 0 for two different resistivities, η = 0.0001
and 0.001, to confirm that the thickness of the current sheet is
increasing with resistivity (see Fig. 14). The resistivity depen-
dence for the different evolution phases is shown in Fig. 15. Fig.
15a shows that γRuth follows a power-law dependence with the
resistivity, γRuth ≈ η−0.1 with a correlation coefficient (CC) of
−64.1%. The resistivity scaling relation for the post-Rutherford
and the entire non-linear regimes are shown in Figs. 15b and 15c
respectively. We estimate the growth rate scaling relations for the
post-Rutherford regime, γPR ≈ η

0.03 (with CC = 59.9%), and the
entire non-linear regime, γavg ≈ η

0.017 (with CC = 66.7%). Pre-
vious studies by Zhang & Ma (2011); Akramov & Baty (2017);
Guo et al. (2017) (and references therein) have reported the resis-
tivity scaling relation of the non-linear growth rates for the DTM
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Fig. 14: Variation of the absolute current density |Jz| (normalized
to unity) at t = 214.68 s, at x = 0 along the y-direction between
±3.75 × 103 km, for two different resistivities, η = 0.0001 and
0.001.

setup in the adiabatic environment, which have larger power-
law indices compared to our estimation. Hence, our study infers
that the resistivity dependence on the non-linear growth rates is
weaker when the thermal instability reinforces the tearing mode.

3.3. Plasmoid distribution and density filling factor

Due to the combined thermal and tearing instability, the current
sheet becomes unstable and the magnetic islands are formed as
shown in Figs. 2c and 2d. These islands show the coalescence
tendency to merge with the neighbourhood companions to form
larger plasmoids (see Figs. 4c and 4d). The mass density of the
plasmoids is higher than in the local background medium. Since
we wish to quantify some statistical properties on the evolving
and coalescing plasmoids and their internal thermodynamics, we
need a criterion to identify and count them. We define the plas-
moids by a density threshold condition: if the density of a region
is more than a density threshold, ρth, then we call it a plasmoid.
Here, the threshold density, ρth is defined as the 0.03% of the
peak density (ρmax) for an instantaneous time. This means the
ρth varies with time, according to the temporal variation of ρmax.
This is equivalent to capturing the density regions up to 3σ level
(99.97%) of the peak density of a Gaussian distribution and sep-
arating out that density enhanced regions from their local back-
ground medium. We also calculate the fraction of volume occu-
pied by these density enhanced structures (or plasmoids) with
respect to the entire volume of the simulation domain (which is
256 × 256 Mm2), which we call the density filling factor. The
number distribution of the plasmoids and the density filling fac-
tor with time for different resistivities are shown in Fig. 16. At
the initial time (t = 0), the ratio between ρmin to ρmax is 16.67%
(which is more than 0.03%). Hence, the threshold density cap-
tures the entire volume of the simulation domain and therefore
the plasmoid numbers obtained in this method remain unity un-
less the density contrast satisfies the density threshold condition
as mentioned above (see Fig. 16a). After this phase, when the
current sheet fragments, the maximum number of small-scale
plasmoids form, which is represented by the highest peak of the
distribution curve of Fig. 16a. We also notice from Fig. 16a that
the current sheet fragments into more plasmoids for lower re-
sistivity values, and the fragmentation phase occurs at a later
time for higher resistivity. We obtain an inverse relation of the
maximum plasmoid numbers with resistivity that follows a scal-
ing relation, N ∼ η0.223 (see Fig. 17). This is similar to the
case, N ∼ η3/8 obtained by Loureiro et al. (2007) for adiabatic
medium, where it is reported that the current sheet thickness de-
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Fig. 15: Variation of the average growth rates, γ with the re-
sistivities for (a) Rutherford, (b) Post-Rutherford, and (c) entire
non-linear regions. The growth rates are scaled with respect to
the Alfvén time scale. The solid lines represent the linear fit of
the growth rates vs η in the log-log scale. The values of the slope
and the correlation coefficients are appended in the correspond-
ing figures.

pends on the resistivity. Thus, our simulation results also im-
ply that the current sheet thickness is a function of the resis-
tivity similar to the Sweet-Parker type current sheet, which is
also being reflected in Fig. 14. Similarly, the density filling fac-
tor for the plasmoids at the initial phase is unity as shown in
Fig. 16b, and it decreases with time so the volume fraction oc-
cupied by the plasmoids diminishes at the later stage of the evo-
lution. The distribution of the maximum plasmoid numbers with
the Lundquist number, S L is shown in Fig. 17, which shows that
the number scales with S 0.223

L (with a correlation coefficient of
the linear fit equal to 0.96). The stability analysis by Loureiro
et al. (2007) reports that this number distribution scales as S 0.375

L
in an adiabatic medium. This suggests that the dependence of
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Fig. 16: Temporal variation of (a) plasmoid numbers and (b) density filling factor for different η with plasma-β = 0.2.
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Fig. 17: Maximum number of the plasmoids vs Lundquist num-
ber, S L obtained from different simulation runs (for plasma-
β=0.2) is shown by the blue triangles. The solid line represents
the linear fit in the log-log scale of the plasmoid numbers vs S L.
The slope and Pearson’s correlation coefficient for the linear fit
are 0.223 and 0.96 respectively.

the Lundquist number in the number distribution of secondary
islands is weaker for a non-adiabatic medium. In the Sweet-
Parker type current sheet, the inverse aspect ratio of the current
sheet, ls/L follows the scaling as ls/L ∼ S −αL , where α = 0.5. In
our study, for ls = 0.5, L = 12.8, and S L in the range between
4.67 × 103 to 2.34 × 105, we estimate the value of α that varies
between 0.26 to 0.38, which are clearly lower than 1/2. This im-
plies that the current sheet is thicker than the Sweet-Parker type
within our explored domain of the Lundquist number. We also
estimate the temporal variation for the distribution of plasmoid
numbers and the density filling factor for different plasma-β val-
ues that are shown in Figs. 18a and 18b respectively. To vary the
plasma-β = 0.2, 0.1 and 0.02, we tune the initial temperature,
Ti = 0.5, 0.25 and 0.05 MK respectively keeping the magnetic
field strength, B0 = 2 G as constant. From 18a we see that the
maximum fragmentation phase of the current sheet occurs at a
later time for higher plasma-β values, but there is no specific
trend for the peak values of the plasmoids with plasma-β. We
perform the same analysis by upgrading the maximum numerical
resolution by 4096 × 4096 with η = 0.001 and plasma-β = 0.2,
keeping all the other parameters constant (see Fig. 19). The nu-
merical resistivity of the medium decreases for higher resolution
values, and hence the maximum plasmoid numbers in the frag-

mentation phase increase as shown in Fig. 19a, though the results
do not alter significantly for different resolutions. The result is
also consistent with the study of the physical resistivity cases as
shown in Fig. 16a. We also notice that the variation of the density
filling factor distribution with time is not significantly different
for different plasma-β (see Fig. 18b) and numerical resolutions
(see Fig. 19b).

Finally, we estimate the kinetic energy density

KE =
1
V

"
ρv2

2
dxdy, (15)

for each time step, where we integrate over of the full simulation
domain, V = lxly, and also quantify the maximum Ohmic heat-
ing, Hohm = η|Jz|

2
max. The evolution of the kinetic energy density

and the maximum Ohmic heating rate for different plasma-β are
shown in Fig. 20a and 20b respectively, which shows that the
maximum energy dissipation per unit time by the Ohmic heat-
ing is approximately two orders of magnitude less than the ki-
netic energy. There is more rapid temporal variation in the later
merging stages of the plasmoids as seen in the Ohmic heating
extremal evolution, and only some modest dependency of the
overall energetics on the plasma beta parameter.

4. Discussion and summary

The instability problem addressed in this work can be related
to the preflare current layer model. A cartoon geometry of the
configuration for a current sheet associated with a preflare event
is shown in Figure 5 of Ledentsov (2021a), where the theoretical
linear stability analysis is carried out with the inclusion of vis-
cosity, electrical and thermal conductivity, and radiative cooling.
In the follow-up works by Ledentsov (2021b,c), the effects
of the guiding magnetic field and the oblique fragmentation
of the current sheet are investigated in linear MHD with an
analysis of the growth rate and spatial periodicity scales of the
instability. Whereas in the present work, we extend the analysis
for growth rate for both linear and non-linear domains with
the incorporation of radiative losses, and constant background
heating by a series of resistive nonlinear, high resolution MHD
simulations. The instability that occurs in this work can be seen
as a thermal instability enhanced pathway to rapid small-scale
tearing behavior, where thereafter coalescing islands evolve and
collect small condensations into larger entrapped cool plasma
sites within magnetic islands. At the initial time (t = 0), the
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Fig. 18: Temporal variation of (a) plasmoid numbers, and (b) density filling factor for different plasma-β with η = 0.001.
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Fig. 19: Temporal variation of (a) plasmoid numbers, and (b) density filling factor for different numerical resolution for η = 0.001
and plasma-β = 0.2.
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Fig. 20: Temporal variation of (a) kinetic energy density, and (b) ohmic heating rate for η = 0.001 and different plasma-β.

thermal balance is maintained due to the equal and counter-
acting effects of the radiative loss and background heating.
However, due to the magnetic field perturbation and the finite
resistivity, some of the sections within the current sheet begin to
increase the density and hence lose more heat due to radiation as
compared to the constant background heat. Hence, the thermal
imbalance occurs which leads to instability. As a result, the

current sheet starts to disintegrate into the form of plasmoids
and these move along the current sheet by merging with the
neighboring plasmoids. The regions of main solar flare energy
release occur from current sheet regions, which can lead to the
outburst of a coronal mass ejection and modern observations
may detect fine scale multi-thermal structure in the reconnecting
sheet, by the brightening in the ultraviolet (UV) regime (Jing
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et al. 2016; Wyper & Pontin 2021). As previously shown in Fig.
4, the secondary islands are present near the magnetic X-points
in the form of plasmoids which appear during the explosive
phase. The local Lundquist number defined by, S L = lxvA/η
(where lx is the length of the current layer), in the series of
our simulations is in the range of 4.67 × 103 to 2.34 × 105. We
see that the formation of the plasmoids occurs over the entire
explored Lundquist number range in our simulation. Note that
this is extending the chaotic reconnection process to much lower
Lundquist range than previously found from purely resistive
(but otherwise adiabatic) evolutions. Indeed, in the previous
studies by Loureiro et al. (2007); Samtaney et al. (2009); Bhat-
tacharjee et al. (2009); Akramov & Baty (2017), it is reported
that the plasmoid formation occurs only beyond a minimum
threshold value of the Lundquist number, S L ∼ 104, where those
studies were limited for adiabatic regimes. This threshold is
also determined by the inhomogeneous inflow and outflow in
the reconnecting sheet, which suppresses the growth of tearing
in an adiabatic medium (Shi et al. 2018). This means that the
formation of plasmoids may occur for lower Lundquist numbers
(. 104) due to the non-adiabatic effects of thermal instability,
and this lower Lundquist range is easily resolvable numerically.
Still, extreme resolution is warranted because the fine-scale
effects this time are due to the thermally unstable nature of the
solar coronal plasma. We also investigate an experiment by
switching off the physical resistivity (i.e. η = 0) but keeping the
adiabatic effects on for a sufficiently high numerical resolution
of 2048 × 2048, so that this experiment is only evolving due to
numerical (unresolved) resistivity. This experiment shows that
even for a low (numerical) resistivity value, the formation of
plasmoids occurs due to the fragmentation of the current layer,
and we get explosive behavior.

We highlight the novel features and the key results of this
work in the following.

1. We set up a numerical experiment of a 2D current sheet
model by incorporating non-adiabatic effects of radiative
loss and constant background heat in a resistive MHD sim-
ulation using MPI-AMRVAC. Due to the magnetic field per-
turbations (Equations 12 and 13), the equilibrium of the sys-
tem breaks down, and the instability kicks in, in the form of
thermal and tearing modes. The current layer starts to dis-
integrate to form secondary islands, which move along the
current sheet by merging with the neighboring plasmoids.

2. The thermodynamical behavior of the current sheet region,
and for a local plasmoid in particular is analyzed. We see the
density enhancement due to the accumulation of the neigh-
boring plasmoids, or density drop due to the disintegration
of the current layer. Accordingly, the temperature of the
medium drops for the density enhanced regions and rises up
for the density depletion regions. We also estimate the global
behavior of the energy loss in the medium due to the optically
thin radiation.

3. We compute the growth rates for the linear and non-linear
phases of the evolution and estimate the scaling relations
with the resistivities for different non-linear phases. We find
that the growth rate obtained from our model is faster by
an order of magnitude, and weaker with resistivity in com-
parison with earlier works by Otto & Birk (1992); Zhang &
Ma (2011); Akramov & Baty (2017); Paul & Vaidya (2021),
where they have assumed the medium to be adiabatic. We
notice the occurrence of the explosive nature of the evolution
within the resistivity domain of η = 5 × 10−3 to 10−4 in our

work. This is a regime where thermal instability enhanced
fragmentation triggers small-scale tearing effects.

4. The temporal variation of the generated plasmoid numbers
and the associated density filling factors are estimated for
different η and plasma-β that are relevant for the solar corona.
We calculate the scaling relation of the maximum plasmoid
numbers with the Lundquist number, S L, and notice it to
vary as S 0.223

L , which is smaller than the value estimated by
Loureiro et al. (2007) for an adiabatic medium. This implies
a thicker tearing-unstable current sheet than the usual Sweet-
Parker type, and indicates that the thermal instability facili-
tates the triggering of tearing modes. We also investigate the
analysis for higher numerical resolution (4096 × 4096) and
see that it does not alter the results significantly.

5. The time evolution of the kinetic energy density and Ohmic
dissipation rate are calculated. The comparison between
these two energies shows that the energy dissipation per unit
time due to Ohmic heating is around two orders of magni-
tude less than the kinetic energy. The later stages show clear
Petschek-like super-Alfvénic outflow regions in between the
merged, larger islands.

We performed a detailed magnetohydrodynamic study of a
current sheet model liable to both thermal and tearing instabil-
ities. We did not incorporate the effects due to thermal conduc-
tion, a guide magnetic field, or gravity in this model. A more
realistic 3D model with the incorporation of these effects can
be explored in near future. However, the current idealized study
sheds new light on the formation mechanisms of plasmoids,
and explosive reconnection behavior of a preflare current layer
model, which is one of the important aspects of solar coronal
heating. Our findings suggest that multi-thermal plasma aspects
must be common in flaring regions, where both hot islands with
their entrapped cooler condensations must show up cospatially
in different wavebands.
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